Session 2: Epidemiological Measures of Disease. Part 4: Mortality Measures

Learning Objectives

- In epidemiologic studies
 - Identify and calculate commonly used measures of mortality

Measures of Mortality

- **Mortality rate** = incidence of death in a population
- Number of deaths occurring in a specified population in a given time period
- You can only die once so the numerator can only be incident cases
- You are at risk of dying all your life!
- When is a mortality rate a good surrogate for an incidence rate of disease?
 - When survival is low

Examples of mortality rates

- Crude mortality: total death rate in an entire population (generally per 100,000 person-years)
- Cause-specific mortality rate: rate at which deaths occur for a specific cause
 - # of deaths from specific cause/total population for a given year
- Age-specific mortality
 - # deaths for age group/total population in age group for a given year

Possible Reasons for Changes in Mortality Trends of Disease

Artifactual

- Error in the numerator due to:
 - Changes in the recognition of disease
 - Changes in rules and procedures for classification of causes of death
 - Changes in accuracy of reporting age at death
- Error in the denominator due to:
 - Enumeration of the population

Possible Reasons for Changes in Mortality Trends of Disease (cont.)

• Real

- Changes in age distribution of the population
- Changes in survivorship due to treatment
- Changes in incidence of disease resulting from genetic factors, environmental factors or prevention (e.g. vaccination)

Proportionate Mortality Ratio

- Useful for identifying leading causes of death
- Gives the relative importance of a specific cause of death in relation to all deaths

PMR =	# of deaths from given cause in specified time period	Per 100
	Total deaths in same time period	

Leading Causes of Death

• PMR

- Lives that can be saved
- Magnitude depends on deaths from other causes (e.g. unintentional injuries among children vs. elderly)

	Age	Death Ra	te/100,000	PMR for
		All causes	Accidents	accidents
				(%)
-	1-4	70	28.2	40.0
	65-74	3190	65.5	2.1

Case Fatality (Rate)

- Refers to proportion of fatal cases among those how have the disease
- Provides an index of the deadliness of a particular disease within a specific population

CFR =	# of deaths due to disease X	x 100
Orix	Number of cases of disease X	

Comparing Mortality Rates and CFRs

- Example: Rabies
 - Deaths from human rabies is rate in the US
- Cause-specific mortality rate would be low
 - Small numerator (# deaths due to rabies)
 - Total population denominator
- Case fatality would be high
 - Because once symptomatic, death is almost certain
 - Numerator (# deaths due to rabies) almost the same as denominator (# cases of rabies)

What is the question?

- Cause-specific Mortality Rate
 - What is the risk of death from disease X for this population?
- Case Fatality
 - What proportion of cases of disease X are fatal?
- PMR
 - What proportion of all deaths is attributable to disease X?

- In the year 2000, City A had a population of 200,000. 200 existing cases of colon cancer were reported, 80 of which were diagnosed in 2000. 50 deaths were attributed to colon cancer.
- What measure would we use to estimate the need for resources devoted to colon cancer treatment?

Prevalence = 200/200,000 = 0.001x100,000 = 100 per 100,000

- In the year 2000, City A had a population of 200,000. 200 existing cases of colon cancer were reported, 80 of which were diagnosed in 2000. 50 deaths were attributed to colon cancer.
- What measure would we use to estimate the average risk of colon cancer?

Incidence $\frac{80}{200,000} = 0.0004 \times 100,000 = 40 \text{ per } 100,000$

- In the year 2000, City A had a population of 200,000. 200 existing cases of colon cancer were reported, 80 of which were diagnosed in 2000. 50 deaths were attributed to colon cancer.
- What measure would we use to estimate the death rate for colon cancer?

Cause-specific mortality rate = 50/200,000 = 0.00025 x 100,000 = 25 per 100,000

- In the year 2000, City A had a population of 200,000. 200 existing cases of colon cancer were reported, 80 of which were diagnosed in 2000. 50 deaths were attributed to colon cancer.
- What measure would we use to estimate the proportion of colon cancers that are fatal?

Case fatality rate = 50/200 = 0.25 x 100 = 25%

Infant Mortality

• Defined as deaths under 1 year

Infant Mortality Rate =	# of deaths among infants < 1 year in specified time period	X 1 000
	# live births in same time period	

Neonate Mortality

• Neonatal death – death during the first 28 days (0-27 days)

Neonatal
Mortality =
$$\frac{\text{No. of neonatal deaths } (0 - 27 \text{ days})}{\text{No. of live births}} \times 1000$$

Rate (NMR)

- Indicator of newborn care
 - Prenatal
 - Intrapartum
 - Neonatal care

Under-five Mortality

• A child dying between birth and five years of age

Under-5 Mortality = $\frac{\text{No. of under-five deaths (0 days to < 5 years)}}{\text{No. of live births}} \times 1000$

Maternal Mortality

Maternal Mortality = $\frac{\text{No.of deaths related to childbirth}}{\text{No.of live births}} \times 100,000$

- Denominator = only live births
 - Ideally would be all pregnancies
 - Registration more complete for live births than for miscarriages/fetal deaths

Other "Rates"

- Crude birth rate:
 - Number of live births per average population
 - Not quite a rate nor a proportion more a ratio
- Fertility rates:
 - Rate of live births per population of women of child-bearing age
 - Not quite a rate not all women are 'at risk' of pregnancy
 - Not time 'at risk'

Life expectancy

• Aka LONGEVITY

Average number of years that a group of infants would live if the group was to experience throughout life the age-specific death rates present in the year of birth

Life Expectancy

- Has increased throughout the world
- US 70.8 years in 1970 to 78.7 years in 2010
- Improved life expectancy due to:
 - Transition from infectious to chronic diseases
 - Improved perinatal care
 - Advances in medicine and healthcare
 - Access to healthcare

Life expectancy

- Factors which reduce life expectancy
- Reduced survival of children and young adults
 - Childhood mortality (infant, neonatal mortality)
 - Higher death rates among young adults due to diseases including CVD, diabetes, cancer, homicide, suicide, and unintentional injuries

Standardization

- Crude measures
 - Summary measures for total population
- Specific measures
 - Measures for population subgroups
 - Restricts the numerator and denominator to specific subgroups (age, sex, race)
- Adjusted measures
 - Summary measures for total population statistically transformed to remove the effect of differences in population composition (such as age)
 - Allows fair comparisons

Standardization

• Why standardize (adjust)?

Example: Incidence densities in two hypothetical populations stratified by age

	Population A			Population B		
Age	Cases	Person-years	ID	Cases	Person-years	ID
0-34	99	99,000	100	1	1,000	100
35 +	10	1,000	1,000	990	99,000	1,000
All	109	100,000	109	991	100,000	991

- Primarily to compensate for differential age distributions among comparison populations
 - E.g. to remove the influence of age when comparing rates between two populations

Standardization

- Advantages
 - Difference in adjusted factor between populations is removed
 - Permits unbiased comparison relative to adjusted factor
- Disadvantages
 - Artificial rate
 - Absolute magnitude depends on standard population chosen
 - Does not represent the actual risk of death or disease

Summary

- Variety of mortality measures
- Numerator: number of deaths
- Denominator:
 - Key component of mortality measures
 - Driven by question of interest